Skip to main content
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Number of genes controlling a quantitative trait in a hybrid zone of the aposematic frog Ranitomeya imitator.


The number of genes controlling mimetic traits has been a topic of much research and discussion. In this paper, we examine a mimetic, dendrobatid frog Ranitomeya imitator, which harbours extensive phenotypic variation with multiple mimetic morphs, not unlike the celebrated Heliconius system. However, the genetic basis for this polymorphism is unknown, and not easy to determine using standard experimental approaches, for this hard-to-breed species. To circumvent this problem, we first develop a new protocol for automatic quantification of complex colour pattern phenotypes from images. Using this method, which has the potential to be applied in many other systems, we define a phenotype associated with differences in colour pattern between different mimetic morphs. We then proceed to develop a maximum-likelihood method for estimating the number of genes affecting a quantitative trait segregating in a hybrid zone. This method takes advantage of estimates of admixture proportions obtained using genetic data, such as microsatellite markers, and is applicable to any other system where a phenotype has been quantified in an admixture/introgression zone. We evaluate the method using extensive simulations and apply it to the R. imitator system. We show that probably one or two, or at most three genes, control the mimetic phenotype segregating in a R. imitator hybrid zone identified using image analyses.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View