Skip to main content
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Identifying Transient Candidates in the Dark Energy Survey Using Convolutional Neural Networks


The ability to discover new transient candidates via image differencing without direct human intervention is an important task in observational astronomy. For these kind of image classification problems, machine learning techniques such as Convolutional Neural Networks (CNNs) have shown remarkable success. In this work, we present the results of an automated transient candidate identification on images with CNNs for an extant data set from the Dark Energy Survey Supernova program, whose main focus was on using Type Ia supernovae for cosmology. By performing an architecture search of CNNs, we identify networks that efficiently select non-artifacts (e.g., supernovae, variable stars, AGN, etc.) from artifacts (image defects, mis-subtractions, etc.), achieving the efficiency of previous work performed with random Forests, without the need to expend any effort in feature identification. The CNNs also help us identify a subset of mislabeled images. Performing a relabeling of the images in this subset, the resulting classification with CNNs is significantly better than previous results, lowering the false positive rate by 27% at a fixed missed detection rate of 0.05.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View