Skip to main content
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Mechanisms of lymphocyte-mediated cytotoxicity. I. The effects of anti-human lymphotoxin antisera on the cytolysis of allogeneic B cell lines by MLC-sensitized human lymphocytes in vitro.


Goat and rabbit anti-human lymphotoxin sera, IgG and F(ab')2 reagents were investigated for their capacity to effect a specific alloimmune lymphocyte-mediated cytotoxic reaction. The cytotoxic reaction employed human peripheral blood or adenoid lymphocytes sensitized in MLC to allogeneic B lymphocyte cell lines and lysis was measured in a short-term 51Cr-release assay. A polyspecific anti-LT sera (anti-WS), made against unfractionated whole supernatants from lectin-activated lymphocytes and its IgG and F(ab')2 fragments, was found to be a potent inhibitor of this reaction when the anti-WS reagent was present throughout the assay period. Absorption studies indicated the anti-WS was inhibiting cytolysis at the level of effector cell or its products. Two broadly defined antibody specificities were involved in the cytolytic-inhibitory activity of the polyspecific anti-LT; i) antigens present on the normal lymphocyte cell surface; and ii) lymphocyte surface antigens associated with activated cells. These results correlate with the previously defined antigenic structure of the LT Cx and alpha H classes. Anti-LT sera reactive with the smaller m.w. alpha and beta classes and subclasses were not inhibitory, although the anti-beta sera showed a moderate enhancing activity. The results indicated that several anti-LT antibody specificities may be required to inhibit alloimmune cytolysis. The results suggest LT molecules may mediate lymphocyte-induced alloimmune cytolysis as a multi-component toxin system, rather than as an individual toxin.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View