Observation-based Simulations of Humidity and Temperature Using Quantile Regression
Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Observation-based Simulations of Humidity and Temperature Using Quantile Regression

Abstract

Abstract: The human impacts of changes in heat events depend on changes in the joint behavior of temperature and humidity. Little is currently known about these complex joint changes, either in observations or projections from general circulation models (GCMs). Further, GCMs do not fully reproduce the observed joint distribution, implying a need for simulation methods that combine information from GCMs with observations for use in impact studies. We present an observation-based, conditional quantile mapping approach for the simulation of future temperature and humidity. A temperature simulation is first produced by transforming historical temperature observations to include projected changes in the mean and temporal covariance structure from a GCM. Next, a humidity simulation is produced by transforming humidity observations to account for projected changes in the conditional humidity distribution given temperature, using a quantile regression model. We use the Community Earth System Model Large Ensemble (CESM1-LE) to estimate future changes in summertime (June–August) temperature and humidity over the continental United States (CONUS), and then use the proposed method to create future simulations of temperature and humidity at stations in the Global Summary of the Day dataset. We find that CESM1-LE projects decreases in summertime humidity across CONUS for a given deviation in temperature from the forced trend, but increases in the risk of high dewpoint on historically hot days. In comparison with raw CESM1-LE output, our observation-based simulation largely projects smaller changes in the future risk of either high or low humidity on days with historically warm temperatures.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View