- Main
Cannabinoid CB2 receptors mediate the anxiolytic-like effects of monoacylglycerol lipase inhibition in a rat model of predator-induced fear
Published Web Location
https://doi.org/10.1038/s41386-020-0696-xAbstract
The endocannabinoid system is a key regulator of the response to psychological stress. Inhibitors of monoacylglycerol lipase (MGL), the enzyme that deactivates the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG), exert anxiolytic-like effects in rodent models via 2-AG-dependent activation of CB1 cannabinoid receptors. In the present study, we examined whether the MGL inhibitor JZL184 might modulate persistent predator-induced fear in rats, a model that captures features of human post-traumatic stress disorder. Exposure to 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), a volatile chemical that is innately aversive to some rodent species, produced in male rats a long-lasting anxiety-like state that was measured 7 days later in the elevated plus maze test. Systemic administration of JZL184 [4, 8 and 16 mg/kg, intraperitoneal (IP)] 4 h before testing caused dose-dependent inhibition of MGL activity and elevation of 2-AG content in brain tissue. Concomitantly, the inhibitor suppressed TMT-induced fear behaviors with a median effective dose (ED50) of 4 mg/kg. A similar behavioral response was observed with another MGL inhibitor, KML29 (4 and 16 mg/kg, IP). Surprisingly, the effect of JZL184 was prevented by co-administration of the CB2 inverse agonist AM630 (5 mg/kg, IP), but not the CB1 inverse agonist rimonabant (1 mg/kg, IP). Supporting mediation of the response by CB2 receptors, the CB2 agonist JWH133 (0.3, 1 and 3 mg/kg, IP) also produced anxiolytic-like effects in TMT-stressed rats, which were suppressed by AM630. Notably, (i) JWH133 was behaviorally ineffective in animals that had no prior experience with TMT; and (ii) CB2 mRNA levels in rat prefrontal cortex were elevated 7 days after exposure to the aversive odorant. The results suggest that JZL184 attenuates the behavioral consequences of predator stress through a mechanism that requires 2-AG-mediated activation of CB2 receptors, whose transcription may be induced by the stress itself.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-