Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Asymptotic distribution of the maximum interpoint distance in a sample of random vectors with a spherically symmetric distribution

Abstract

Extreme value theory is part and parcel of any study of order statistics in one dimension. Our aim here is to consider such large sample theory for the maximum distance to the origin, and the related maximum "interpoint distance," in multidimensions. We show that for a family of spherically symmetric distributions, these statistics have a Gumbel-type limit, generalizing several existing results. We also discuss the other two types of limit laws and suggest some open problems. This work complements our earlier study on the minimum interpoint distance.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View