Skip to main content
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Acute Intracerebroventricular Administration of Palmitoylethanolamide, an Endogenous Peroxisome Proliferator-Activated Receptor-α Agonist, Modulates Carrageenan-Induced Paw Edema in Mice


Peroxisome proliferator-activated receptor (PPAR)-alpha is a nuclear transcription factor. Although the presence of this receptor in different areas of central nervous system (CNS) has been reported, its role remains unclear. Palmitoylethanolamide (PEA), a member of the fatty-acid ethanolamide family, acts peripherally as an endogenous PPAR-alpha ligand, exerting analgesic and anti-inflammatory effects. High levels of PEA in the CNS have been found, but the specific function of this lipid remains to be clarified. Using carrageenan-induced paw edema in mice, we show that i.c.v. administration of PEA may control peripheral inflammation through central PPAR-alpha activation. A single i.c.v. administration of 0.01 to 1 microg of PEA, 30 min before carrageenan injection, reduced edema formation in the mouse carrageenan test. This effect was mimicked by 0.01 to 1 microg of GW7647 [2-[[4-[2-[[(cyclohexylamino)carbonyl](4-cyclohexylbutyl)amino]ethyl]phenyl]thio]-2-methylpropanoic acid], a synthetic PPAR-alpha agonist. Moreover, central PEA administration significantly reduced the expression of the proinflammatory enzymes cyclooxygenase-2 and inducible nitric-oxide synthase, and it significantly restored carrageenan-induced PPAR-alpha reduction in the spinal cord. To investigate the mechanism by which i.c.v. PEA attenuated the development of carrageenan-induced paw edema, we evaluated inhibitor kappaB-alpha (I kappa B-alpha) degradation and nuclear factor-kappaB (NF-kappaB) p65 activation in the cytosolic or nuclear extracts from spinal cord tissue. PEA prevented IkB-alpha degradation and NF-kappaB nuclear translocation, confirming the involvement of this transcriptional factor in the control of peripheral inflammation. The obligatory role of PPAR-alpha in mediating the effects of PEA was confirmed by the lack of the compounds anti-inflammatory effects in mutant mice lacking PPAR-alpha. In conclusion, our data show for the first time that PPAR-alpha activation in the CNS can control peripheral inflammation.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View