Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Electronic Theses and Dissertations bannerUCLA

Evaluating and Understanding Adversarial Robustness in Deep Learning

Abstract

Deep Neural Networks (DNNs) have made many breakthroughs in different areas of artificial intelligence. However, recent studies show that DNNs are vulnerable to adversarial examples. A tiny perturbation on an image that is almost invisible to human eyes could mislead a well-trained image classifier towards misclassification. This raises serious security concerns and trustworthy issues towards the robustness of Deep Neural Networks in solving real world challenges. Researchers have been working on this problem for a while and it has further led to a vigorous arms race between heuristic defenses that propose ways to defend against existing attacks and newly-devised attacks that are able to penetrate such defenses. While the arm race continues, it becomes more and more crucial to accurately evaluate model robustness effectively and efficiently under different threat models and identify those ``falsely'' robust models that may give us a false sense of robustness. On the other hand, despite the fast development of various kinds of heuristic defenses, their practical robustness is still far from satisfactory, and there are actually little algorithmic improvements in terms of defenses during recent years. This suggests that there still lacks further understandings toward the fundamentals of adversarial robustness in deep learning, which might prevent us from designing more powerful defenses. \The overarching goal of this research is to enable accurate evaluations of model robustness under different practical settings as well as to establish a deeper understanding towards other factors in the machine learning training pipeline that might affect model robustness. Specifically, we develop efficient and effective Frank-Wolfe attack algorithms under white-box and black-box settings and a hard-label adversarial attack, RayS, which is capable of detecting ``falsely'' robust models. In terms of understanding adversarial robustness, we propose to theoretically study the relationship between model robustness and data distributions, the relationship between model robustness and model architectures, as well as the relationship between model robustness and loss smoothness. The techniques proposed in this dissertation form a line of researches that deepens our understandings towards adversarial robustness and could further guide us in designing better and faster robust training methods.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View