Skip to main content
eScholarship
Open Access Publications from the University of California

Real-time measurement of sodium in single aerosol particles by flame emission: Laboratory characterization

  • Author(s): Clark, CD
  • Campuzano-Jost, P
  • Covert, DS
  • Richter, RC
  • Maring, H
  • Hynes, AJ
  • Saltzman, ES
  • et al.
Abstract

A flame emission aerosol sodium detector (ASD) has been developed to study the distribution of seasalt in individual marine aerosol droplets. The instrument detects sodium via D-line emission in a fuel-rich, laminar, hydrogen/oxygen/nitrogen flame. Laboratory studies with synthetic monodisperse aerosols were carried out in order to characterize the sensitivity, precision, and linearity of the technique. Experiments were also carried out with aerosols generated from mixed salt solutions and seawater in order to determine whether ionic or other matrix effects lead to interference. The ASD has a linear response function for NaCl aerosol particles from 100 nm to 2.0μm in diameter. The precision of sodium mass measurements is on the order of ±3% standard error on replicate measurements, with a quantitative response to the sodium content of a single aerosol particle that is independent of the chemical composition of the particle, i.e. anions, cations, seawater. No interferences were found with major ions in seawater and common atmospheric aerosols. These experiments demonstrate a detection limit equivalent to a 100 nm diameter dry 100% NaCl aerosol. Copyright © 2001 Elsevier Science Ltd.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View