Skip to main content
Open Access Publications from the University of California


UCLA Previously Published Works bannerUCLA

The position of the fast-inactivation gate during lidocaine block of voltage-gated Na+ channels.

  • Author(s): Vedantham, V;
  • Cannon, SC
  • et al.

Lidocaine produces voltage- and use-dependent inhibition of voltage-gated Na+ channels through preferential binding to channel conformations that are normally populated at depolarized potentials and by slowing the rate of Na+ channel repriming after depolarizations. It has been proposed that the fast-inactivation mechanism plays a crucial role in these processes. However, the precise role of fast inactivation in lidocaine action has been difficult to probe because gating of drug-bound channels does not involve changes in ionic current. For that reason, we employed a conformational marker for the fast-inactivation gate, the reactivity of a cysteine substituted at phenylalanine 1304 in the rat adult skeletal muscle sodium channel alpha subunit (rSkM1) with [2-(trimethylammonium)ethyl]methanethiosulfonate (MTS-ET), to determine the position of the fast-inactivation gate during lidocaine block. We found that lidocaine does not compete with fast-inactivation. Rather, it favors closure of the fast-inactivation gate in a voltage-dependent manner, causing a hyperpolarizing shift in the voltage dependence of site 1304 accessibility that parallels a shift in the steady state availability curve measured for ionic currents. More significantly, we found that the lidocaine-induced slowing of sodium channel repriming does not result from a slowing of recovery of the fast-inactivation gate, and thus that use-dependent block does not involve an accumulation of fast-inactivated channels. Based on these data, we propose a model in which transitions along the activation pathway, rather than transitions to inactivated states, play a crucial role in the mechanism of lidocaine action.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View