Skip to main content
Open Access Publications from the University of California


UC San Francisco Previously Published Works bannerUCSF

Truncated form of TGF-βRII, but not its absence, induces memory CD8+ T cell expansion and lymphoproliferative disorder in mice.

  • Author(s): Ishigame, Harumichi;
  • Mosaheb, Munir M;
  • Sanjabi, Shomyseh;
  • Flavell, Richard A
  • et al.

Published Web Location
No data is associated with this publication.

Inflammatory and anti-inflammatory cytokines play an important role in the generation of effector and memory CD8(+) T cells. We used two different models, transgenic expression of truncated (dominant negative) form of TGF-βRII (dnTGFβRII) and Cre-mediated deletion of the floxed TGF-βRII to examine the role of TGF-β signaling in the formation, function, and homeostatic proliferation of memory CD8(+) T cells. Blocking TGF-β signaling in effector CD8(+) T cells using both of these models demonstrated a role for TGF-β in regulating the number of short-lived effector cells but did not alter memory CD8(+) T cell formation and their function upon Listeria monocytogenes infection in mice. Interestingly, however, a massive lymphoproliferative disorder and cellular transformation were observed in Ag-experienced and homeostatically generated memory CD8(+) T cells only in cells that express the dnTGFβRII and not in cells with a complete deletion of TGF-βRII. Furthermore, the development of transformed memory CD8(+) T cells expressing dnTGFβRII was IL-7- and IL-15-independent, and MHC class I was not required for their proliferation. We show that transgenic expression of the dnTGFβRII, rather than the absence of TGF-βRII-mediated signaling, is responsible for dysregulated expansion of memory CD8(+) T cells. This study uncovers a previously unrecognized dominant function of the dnTGFβRII in CD8(+) T cell proliferation and cellular transformation, which is caused by a mechanism that is different from the absence of TGF-β signaling. These results should be considered during both basic and translational studies where there is a desire to block TGF-β signaling in CD8(+) T cells.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item