Skip to main content
Open Access Publications from the University of California

Finding the missing stratospheric Bry: a global modeling study of CHBr3 and CH2Br2

  • Author(s): Liang, Q.
  • Stolarski, R. S
  • Kawa, S. R
  • Nielsen, J. E
  • Douglass, A. R
  • Rodriguez, J. M
  • Blake, D. R
  • Atlas, E. L
  • Ott, L. E
  • et al.

Recent in situ and satellite measurements suggest a contribution of similar to 5 pptv to stratospheric inorganic bromine from short-lived bromocarbons. We conduct a modeling study of the two most important short-lived bromocarbons, bromoform (CHBr3) and dibromomethane (CH2Br2), with the Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) to account for this missing stratospheric bromine. We derive a 'top-down' emission estimate of CHBr3 and CH2Br2 using airborne measurements in the Pacific and North American troposphere and lower stratosphere obtained during previous NASA aircraft campaigns. Our emission estimate suggests that to reproduce the observed concentrations in the free troposphere, a global oceanic emission of 425 Gg Br yr(-1) for CHBr3 and 57 Gg Br yr(-1) for CH2Br2 is needed, with 60% of emissions from open ocean and 40% from coastal regions. Although our simple emission scheme assumes no seasonal variations, the model reproduces the observed seasonal variations of the short-lived bromocarbons with high concentrations in winter and low concentrations in summer. This indicates that the seasonality of short-lived bromocarbons is largely due to seasonality in their chemical loss and transport. The inclusion of CHBr3 and CH2Br2 contributes similar to 5 pptv bromine throughout the stratosphere. Both the source gases and inorganic bromine produced from source gas degradation (Br-y(VSLS)) in the troposphere are transported into the stratosphere, and are equally important. Inorganic bromine accounts for half (2.5 pptv) of the bromine from the inclusion of CHBr3 and CH2Br2 near the tropical tropopause and its contribution rapidly increases to similar to 100% as altitude increases. More than 85% of the wet scavenging of Br-y(VSLS) occurs in large-scale precipitation below 500 hPa. Our sensitivity study with wet scavenging in convective updrafts switched off suggests that Br-y(VSLS) in the stratosphere is not sensitive to convection. Convective scavenging only accounts for similar to 0.2 pptv (4%) difference in inorganic bromine delivered to the stratosphere.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View