Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

110th Anniversary: Theory of Activity Coefficients for Lithium Salts in Aqueous and Nonaqueous Solvents and in Solvent Mixtures

Abstract

On the basis of work by Bernard and Blum [Bernard, O.; Blum, L. Binding Mean Spherical Approximation for Pairing Ions: An Exponential Approximation and Thermodynamics. J. Chem. Phys. 1996, 104, 4746-4754], Barthel et al. [Barthel, J.; Krienke, H.; Holovko, M.; Kapko, V.; Protsykevich, I. The Application of the Associative Mean Spherical Approximation in the Theory of Nonaqueous Electrolyte Solutions. Condens. Matter Phys. 2000, 3, 23], and Simonin et al. [Simonin, J.-P.; Bernard, O.; Blum, L. Real Ionic Solutions in the Mean Spherical Approximation. 3. Osmotic and Activity Coefficients for Associating Electrolytes in the Primitive Model. J. Phys. Chem. B 1998, 102, 4411-4417], this work presents and validates a molecular-thermodynamic model for lithium salt activity coefficients in aqueous and nonaqueous single- and mixed-solvent systems. The Binding Mean Spherical Approximation gives electrolyte activity due to long-range electrostatic forces, short-range hard-sphere repulsion, and ion-pair formation. The theory shows good agreement with measured salt activities up to 3 molar in aqueous and nonaqueous solvents using a solvent-dependent, concentration-independent, center-to-center distance of closest approach between ions as the single fitting parameter for each electrolyte system. For mixed-solvent electrolytes, the local solvation environment around the ions dictates short-range interactions. To account for preferential ion solvation in a mixed solvent, the center-to-center distance is obtained from Wang and co-workers' Dipolar Self-Consistent-Field Theory [Nakamura, I.; Shi, A.-C.; Wang, Z.-G. Ion Solvation in Liquid Mixtures: Effects of Solvent Reorganization. Phys. Rev. Lett. 2012, 109, 257802]. For a particular salt in a binary solvent mixture at fixed temperature, the model predicts salt activity coefficients using only the fitted single-solvent distances-of-closest approach.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View