Skip to main content
eScholarship
Open Access Publications from the University of California

Temperature alters multimodal signaling and mating success in an ectotherm

  • Author(s): Brandt, EE
  • Kelley, JP
  • Elias, DO
  • et al.
Abstract

© 2018, Springer-Verlag GmbH Germany, part of Springer Nature. Abstract: Temperature affects ectotherms in a variety of ways. These effects can be especially complex in sexual behaviors, as different sexes may be affected differently by temperature. We examined this in the jumping spider, Habronattus clypeatus. In this species, males court females using visual and vibratory signals. We tested whether key intersexual behaviors would change with temperature in similar, predictable ways across males and females. We first measured temperature and apparent activity of individuals across the day. We found that H. clypeatus are active across a wide range of temperatures (11–56 °C) and are most active at times of day when temperature ranges from 13 to 46 °C. Next, we performed mating experiments across behaviorally relevant temperatures. Females were more likely to allow males to progress to later stages of courtship and had higher mating rates at higher temperatures. Male visual and vibratory courtship behaviors generally became faster, higher-pitched, and lower in amplitude at higher temperatures. This relationship between temperature and signal aspects attained a roughly curvilinear shape, with an asymptote around 40 °C. Intriguingly, mating rates in the lab were highest at temperatures potentially above those during peak spider activity in the field. Our results suggest that temperature’s effects on behavior are complex and can affect males and females differently. This work emphasizes that understanding temperature effects on mating is critical to understanding sexual selection patterns particularly in species which use complex signals. Significance statement: Temperature affects communication in most ectothermic species. Previous research has shown that temperature changes courter signals and chooser choice. However, this has never been investigated in species that use multimodal signals. We investigate how signals and choice change across temperatures in a desert-dwelling jumping spider. Using field temperature/activity modeling and a series of courtship experiments in the lab, we show that male signals and female choice change with temperature across biologically relevant ranges. Our results suggest that the temperatures at which mating is most likely occur at times of the day when animals are least active. These counterintuitive results highlight the importance of understanding how behavior in a controlled lab environment corresponds to natural field conditions as well as the importance of examining the effects of naturally occurring environmental variation on behavior.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View