Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

A Novel Color-Coded Liver Metastasis Mouse Model to Distinguish Tumor and Adjacent Liver Segment

Abstract

Background

It is difficult to distinguish between a tumor and its liver segment with traditional use of indocyanine green (ICG) alone. In the present study, a method was used to limit ICG to the liver segment adjacent to a tumor. A spectrally-distinct fluorescently-labeled tumor-specific antibody against human carcinoembryonic antigen-related cell-adhesion molecules was used to label the metastatic tumor in a patient-derived orthotopic xenograft mouse model to enable color-coded visualization and distinction of a colon-cancer liver metastases and its adjacent liver segment.

Materials and methods

Nude mice received surgical orthotopic implantation in the liver of colon-cancer liver metastases derived from two patients. An anti- carcinoembryonic antigen-related cell-adhesion molecules monoclonal antibody (mAb 6G5j) was conjugated to a near-infrared dye IR700DX (6G5j-IR700DX). After three weeks, mice received 6G5j-IR700DX via tail-vein injection 48 hours before surgery. ICG was intravenously injected after ligation of the left or left lateral Glissonean pedicle resulting in labeling of the segment with preserved blood-flow in the liver. Imaging was performed with the Pearl Trilogy and FLARE Imaging Systems.

Results

The metastatic liver tumor had a clear fluorescence signal due to selective tumor targeting by 6G5j-IR700DX, which was imaged on the 700 nm channel. The adjacent liver segment, with preserved blood-flow in the liver, had a clear fluorescence ICG 800 nm signal, while the left or left lateral segment had no fluorescence signal. Overlay of the images showed clear color-coded differentiation between the tumor fluorescing at 700 nm and the adjacent liver segment fluorescing at 800 nm.

Conclusions

Color-coding of a liver tumor and uninvolved liver segment has the potential for improved liver resection.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View