Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Stabilization of mixed-phase structures in highly strained BiFeO3 thin films via chemical-alloying

Published Web Location

https://doi.org/10.1063/1.3688175
Abstract

Chemical-alloying is demonstrated to stabilize the mixed-phase structure of highly strained epitaxial BiFeO 3/LaAlO 3 (001) heterostructures. Such mixed-phase structures are essential for the large electromechanical responses (4%-5% strains under applied electric field); however, films with thickness exceeding 250 nm undergo an epitaxial breakdown to a non-epitaxial bulk-like rhombohedral-phase. Such an irreversible transformation of the mixed-phase structure limits the magnitude of the net surface displacement associated with these field-induced phase transformations. Using high-resolution x-ray diffraction reciprocal space mapping and scanning-probe-based studies, we show that chemical-alloying of BiFeO 3 thin films can stabilize these mixed-phase structures and delay the onset of epitaxial breakdown. © 2012 American Institute of Physics.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View