Skip to main content
eScholarship
Open Access Publications from the University of California

Effects of Δ⁹-tetrahydrocannabinol (THC) vapor inhalation in Sprague-Dawley and Wistar rats.

  • Author(s): Taffe, Michael A
  • Creehan, Kevin M
  • Vandewater, Sophia A
  • Kerr, Tony M
  • Cole, Maury
  • et al.
Abstract

An inhalation system based on e-cigarette technology produces hypothermic and antinociceptive effects of Δ⁹-tetrahydrocannabinol (THC) in rats. Indirect comparison of some prior investigations suggested differential impact of inhaled THC between Wistar (WI) and Sprague-Dawley (SD) rats; thus, this study was conducted to directly compare the strains across inhaled and injected routes of administration. Groups (N = 8 per strain) of age-matched male SD and WI rats were prepared with radiotelemetry devices to measure temperature and then exposed to vapor from the propylene glycol (PG) vehicle or THC (25-200 mg/mL of PG) for 30 or 40 min. Additional studies evaluated effects of THC inhalation on plasma THC (50-200 mg/mL) and nociception (100-200 mg/mL) as well as the thermoregulatory effect of intraperitoneal injection of THC (5-30 mg/kg). Hypothermic effects of THC were more pronounced in SD rats, where plasma levels of THC were identical across strains, under either fixed inhalation conditions or injection of a mg/kg equivalent dose. Strain differences in hypothermia were largest after i.p. injection of THC, with SD rats exhibiting dose-dependent temperature reduction after 5 or 10 mg/kg, i.p. and the WI rats only exhibiting significant hypothermia after 20 mg/kg, i.p. The antinociceptive effects of inhaled THC (100, 200 mg/mL) did not differ significantly across the strains. These studies confirm an insensitivity of WI rats, compared with SD rats, to hypothermia induced by THC following inhalation conditions that produced identical plasma THC and antinociception. Thus, quantitative, albeit not qualitative, strain differences may be obtained when studying thermoregulatory effects of THC. (PsycInfo Database Record (c) 2020 APA, all rights reserved).

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View