- Main
Arabidopsis defense mutant ndr1-1 displays accelerated development and early flowering mediated by the hormone gibberellic acid
Abstract
NONRACE-SPECIFIC DISEASE RESISTANCE (NDR1) is a widely characterized gene that plays a key role in defense against multiple bacterial, fungal, oomycete and nematode plant pathogens. NDR1 is required for activation of resistance by multiple NB and LRR-containing (NLR) protein immune sensors and contributes to basal defense. The role of NDR1 in positively regulating salicylic acid (SA)-mediated plant defense responses is well documented. However, ndr1-1 plants flower earlier and show accelerated development in comparison to wild type (WT) Arabidopsis plants, indicating that NDR1 is a negative regulator of flowering and growth. Exogenous application of gibberellic acid (GA) further accelerates the early flowering phenotype in ndr1-1 plants, while the GA biosynthesis inhibitor paclobutrazol attenuated the early flowering phenotype of ndr1-1, but not to WT levels, suggesting partial resistance to paclobutrazol and enhanced GA response in ndr1-1 plants. Mass spectroscopy analyses confirmed that ndr1-1 plants have 30-40% higher levels of GA3 and GA4, while expression of various GA metabolic genes and major flowering regulatory genes is also altered in the ndr1-1 mutant. Taken together this study provides evidence of crosstalk between the ndr1-1-mediated defense and GA-regulated developmental programs in plants.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file.
-
-
-
-
-
-
-
-
-
-
-
-
-
-