Skip to main content
Open Access Publications from the University of California

Quantum chemical studies of redox properties and conformational changes of a four-center iron CO2 reduction electrocatalyst.

  • Author(s): Jang, Hyesu
  • Qiu, Yudong
  • Hutchings, Marshall E
  • Nguyen, Minh
  • Berben, Louise A
  • Wang, Lee-Ping
  • et al.

The CO2 reduction electrocatalyst [Fe4N(CO)12]- (abbrev. 1-) reduces CO2 to HCO2- in a two-electron, one-proton catalytic cycle. Here, we employ ab initio calculations to estimate the first two redox potentials of 1- and explore the pathway of a side reaction involving CO dissociation from 13-. Using the BP86 density functional approximation, the redox potentials were computed with a root mean squared error of 0.15 V with respect to experimental data. High temperature Born-Oppenheimer molecular dynamics was employed to discover a reaction pathway of CO dissociation from 13- with a reaction energy of +10.6 kcal mol-1 and an activation energy of 18.8 kcal mol-1; including harmonic free energy terms, this yields ΔGsep = 1.4 kcal mol-1 for fully separated species and ΔG‡ = +17.4 kcal mol-1, indicating CO dissociation is energetically accessible at ambient conditions. The analogous dissociation pathway from 12- has a reaction energy of 22.1 kcal mol-1 and an activation energy of 22.4 kcal mol-1 (ΔGsep = 12.8 kcal mol-1, ΔG‡ = +18.1 kcal mol-1). Our computed harmonic vibrational analysis of [Fe4N(CO)11]3- or 23- reveals a distinct CO-stretching peak red-shifted from the main CO-stretching band, pointing to a possible vibrational signature of dissociation. Multi-reference CASSCF calculations are used to check the assumptions of the density functional approximations that were used to obtain the majority of the results.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View