A discrete data assimilation scheme for the solutions of the 2D Navier-Stokes equations and their statistics
Skip to main content
eScholarship
Open Access Publications from the University of California

A discrete data assimilation scheme for the solutions of the 2D Navier-Stokes equations and their statistics

  • Author(s): Foias, C
  • Mondaini, CF
  • Titi, ES
  • et al.
Abstract

We adapt a previously introduced continuous in time data assimilation (downscaling) algorithm for the 2D Navier-Stokes equations to the more realistic case when the measurements are obtained discretely in time and may be contaminated by systematic errors. Our algorithm is designed to work with a general class of observables, such as low Fourier modes and local spatial averages over finite volume elements. Under suitable conditions on the relaxation (nudging) parameter, the spatial mesh resolution and the time step between successive measurements, we obtain an asymptotic in time estimate of the difference between the approximating solution and the unknown reference solution corresponding to the measurements, in an appropriate norm, which shows exponential convergence up to a term which depends on the size of the errors. A stationary statistical analysis of our discrete data assimilation algorithm is also provided.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View