Skip to main content
eScholarship
Open Access Publications from the University of California

Multiple mechanisms actively target the SUN protein UNC-84 to the inner nuclear membrane.

  • Author(s): Tapley, Erin C
  • Ly, Nina
  • Starr, Daniel A
  • et al.
Abstract

Approximately 100 proteins are targeted to the inner nuclear membrane (INM), where they regulate chromatin and nuclear dynamics. The mechanisms underlying trafficking to the INM are poorly understood. The Caenorhabditis elegans SUN protein UNC-84 is an excellent model to investigate such mechanisms. UNC-84 recruits KASH proteins to the outer nuclear membrane to bridge the nuclear envelope (NE), mediating nuclear positioning. UNC-84 has four targeting sequences: two classical nuclear localization signals, an INM sorting motif, and a signal conserved in mammalian Sun1, the SUN--nuclear envelope localization signal. Mutations in some signals disrupt the timing of UNC-84 nuclear envelope localization, showing that diffusion is not sufficient to move all UNC-84 to the NE. Thus targeting UNC-84 requires an initial step that actively transports UNC-84 from the peripheral endoplasmic reticulum to the NE. Only when all four signals are simultaneously disrupted does UNC-84 completely fail to localize and to function in nuclear migration, meaning that at least three signals function, in part, redundantly to ensure proper targeting of UNC-84. Multiple mechanisms might also be used to target other proteins to the INM, thereby ensuring their proper and timely localization for essential cellular and developmental functions.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View