Skip to main content
eScholarship
Open Access Publications from the University of California

Targeted deletion of Kcne3 impairs skeletal muscle function in mice

  • Author(s): King, EC
  • Patel, V
  • Anand, M
  • Zhao, X
  • Crump, SM
  • Hu, Z
  • Weisleder, N
  • Abbott, GW
  • et al.
Abstract

KCNE3 (MiRP2) forms heteromeric voltage-gated K+ channels with the skeletal muscle-expressed KCNC4 (Kv3.4) α subunit. KCNE3 was the first reported skeletal muscle K+ channel disease gene, but the requirement for KCNE3 in skeletal muscle has been questioned. Here, we confirmed KCNE3 transcript and protein expression in mouse skeletal muscle using Kcne3-/- tissue as a negative control. Whole-transcript microarray analysis (770,317 probes, interrogating 28,853 transcripts) findings were consistent with Kcne3 deletion increasing gastrocnemius oxidative metabolic gene expression and the proportion of type IIa fast-twitch oxidative muscle fibers, which was verified using immunofluorescence. The down-regulated transcript set overlapped with muscle unloading gene expression profiles (≥1.5-fold change; P < 0.05). Gastrocnemius K+ channel α subunit remodeling arising from Kcne3 deletion was highly specific, involving just 3 of 69 α subunit genes probed: known KCNE3 partners KCNC4 and KCNH2 (mERG) were down-regulated, and KCNK4 (TRAAK) was up-regulated (P < 0.05). Functionally, Kcne3-/- mice exhibited abnormal hind-limb clasping upon tail suspension (63% of Kcne3-/- mice ≥10-mo-old vs. 0% age-matched Kcne3+/+ littermates). Whereas 5 of 5 Kcne3+/+ mice exhibited the typical biphasic decline in contractile force with repetitive stimuli of hind-limb muscle, both in vivo and in vitro, this was absent in 6 of 6 Kcne3-/- mice tested. Finally, myoblasts isolated from Kcne3-/- mice exhibit faster-inactivating and smaller sustained outward currents than those from Kcne3+/+ mice. Thus, Kcne3 deletion impairs skeletal muscle function in mice.-King, E. C., Patel, V., Anand, M., Zhao, X., Crump, S. M., Hu, Z., Weisleder, N., Abbott, G. W. Targeted deletion of Kcne3 impairs skeletal muscle function in mice.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View