Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

SnCl 4 -catalyzed isomerization/dehydration of xylose and glucose to furanics in water

Abstract

A number of Lewis acid catalysts were screened for their effectiveness in converting both xylose and glucose in aqueous media to furfural and 5-HMF, respectively. While other catalysts were found to be more active, SnCl4 was identified as the most selective Lewis acid. Hydrolysis of SnCl4 was observed at various concentrations and temperatures resulting in the production of Brønsted acidic protons in a 3.5:1 ratio to Sn4+ at all SnCl4 concentrations above 60°C. As a consequence, there was no need to add a Brønsted acid in order to promote the dehydration of either xylose or glucose. SnCl4-promoted isomerization/dehydration of xylose and glucose at 140°C in water resulted in conversions of 55% and 33%, respectively, after 2 h of reaction, and furfural and 5-HMF selectivities of up to 58% and 27%, respectively. Significant conversion of sugars to humins was observed in both cases, and in the case of glucose, degradation of 5-HMF to levulinic and formic acids was also noted. The effects of secondary reactions could be greatly suppressed by extraction of the furanic product as it was produced. Using n-butanol as the extracting agent, xylose and glucose conversions of 90% and 75%, respectively, were observed after 5 h of reaction, and the selectivities to furfural and 5-HMF increased to 85% and 69%, respectively. Small additional increases in the furfural and 5-HMF selectivities were obtained by adding LiCl to the aqueous phase without much effect on the conversion of either sugar. In this case, the selectivities to furfural and 5-HMF were 88% and 72%, respectively, after 5 h of reaction at 140°C.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View