Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Optimization of the Sensitization Process and Stability of Octadentate Eu(III) 1,2-HOPO Complexes

Abstract

The synthesis of a series of octadentate ligands containing the 1-hydroxypyridin-2-one (1,2-HOPO) group in complex with europium(III) is reported. Within this series, the central bridge connecting two diethylenetriamine units linked to two 1,2-HOPO chromophores at the extremities (5-LIN-1,2-HOPO) is varied from a short ethylene chain (H(2,2)-1,2-HOPO) to a long pentaethylene oxide chain (H(17O5,2)-1,2-HOPO). The thermodynamic stability of the europium complexes has been studied and reveals these complexes may be effective for biological measurements. Extension of the central bridge results in exclusion of the inner-sphere water molecule observed for [Eu(H(2,2)-1,2-HOPO)](-) going from a nonacoordinated to an octacoordinated Eu(III) ion. With the longer chain length ligands, the complexes display increased luminescence properties in aqueous medium with an optimum of 20% luminescence quantum yield for the [Eu(H(17O5,2)-1,2-HOPO)](-) complex. The luminescence properties for [Eu(H(14O4,2)-1,2-HOPO)](-) and [Eu(H(17O5,2)-1,2-HOPO)](-) are better than that of the model bis-tetradentate [Eu(5LIN(Me)-1,2-HOPO)2](-) complex, suggesting a different geometry around the metal center despite the geometric freedom allowed by the longer central chain in the H(mOn,2) scaffold. These differences are also evidenced by examining the luminescence spectra at room temperature and at 77 K and by calculating the luminescence kinetic parameters of the europium complexes.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View