Skip to main content
Open Access Publications from the University of California

Elevated free fatty acids induce uncoupling protein 3 expression in muscle: a potential explanation for the effect of fasting.

  • Author(s): Weigle, DS
  • Selfridge, LE
  • Schwartz, MW
  • Seeley, RJ
  • Cummings, DE
  • Havel, PJ
  • Kuijper, JL
  • BeltrandelRio, H
  • et al.

The newly described uncoupling protein 3 (UCP3) may make an important contribution to thermogenesis in humans because of its high level of expression in skeletal muscle. Contrary to expectations, fasting, a condition that reduces resting energy expenditure, has been reported to increase UCP3 expression in muscle. We have confirmed that a 10-fold increase in UCP3 mRNA levels occurs in rat quadriceps muscle between 12 and 24 h of food removal. A less consistent twofold increase in muscle UCP2 mRNA levels was observed in animals fasted for up to 72 h. Administration of recombinant leptin to prevent a fall in circulating leptin levels did not eliminate the fasting-induced increase in quadriceps UCP3 expression. Administration of a high dose of glucocorticoid to fed animals to mimic the increase in corticosterone induced by fasting did not reproduce the increase in UCP3 expression observed in fasted animals. In contrast, elevation of circulating free fatty acid levels in fed animals by Intralipid plus heparin infusion caused significant increases in the UCP3/actin mRNA ratio compared with saline-infused fed controls in both extensor digitorum longus (2.01 +/- 0.34 vs. 0.68 +/- 0.11, P = 0.002) and soleus muscles (0.31 +/- 0.07 vs. 0.09 +/- 0.02, P = 0.014). We conclude that free fatty acids are a potential mediator of the increase in muscle UCP3 expression that occurs during fasting. This seemingly paradoxical induction of UCP3 may be linked to the use of free fatty acid as a fuel rather than an increased need of the organism to dissipate energy.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View