- Main
Simulation of the DIII‐D Beam Ion Heating Experiment Using A Monte‐Carlo Particle Code Combined With a Full Wave Code
Abstract
To fully account for finite drift orbit effect of fast ions on wave-particle interaction in ion-cyclotron radio frequency (ICRF) heating experiments in tokamaks, the 5-D finite orbit Monte-Carlo plasma distribution solver ORBIT-RF is coupled with the 2-D full wave code AORSA in a self-consistent way. Comparison results of ORBIT-RF/AORSA simulation against fast-ion Dα (FIDA) measurement of fast-ion distribution as well as CQL3D/ray-tracing simulation with zero-orbit approximation in the DIII-D ICRF wave beam-ion acceleration experiment are presented. Preliminary ORBIT-RF/AORSA results suggest that finite orbit width effects may explain the outward radial shift of the spatial profile measured by FIDA. © 2009 American Institute of Physics.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-