Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Electronic Theses and Dissertations bannerUC San Diego

Some rigidity results for coinduced actions and structural results for group von Neumann algebras

Abstract

In Chapter \ref{Ch: OE} of this dissertation we prove a cocycle superrigidity theorem for a large class of coinduced actions. In particular, if $\Sigma$ is an infinite index subgroup of a countable group $\Gamma$, we consider a probability measure preserving (pmp) action $\Sigma\curvearrowright X_0$ and let $\Gamma\curvearrowright X$ be the coinduced action. Assume either that $\Gamma$ has property (T) or that $\Sigma$ is amenable and $\Gamma$ is a product of non-amenable groups. Using Popa's deformation/rigidity theory we prove $\Gamma\curvearrowright X$ is $\mathcal U_{fin}$-cocycle superrigid, that is any cocycle for this action to a $\mathcal U_{fin}$ (e.g. countable) group $\mathcal V$ is cohomologous to a homomorphism from $\Gamma$ to $\mathcal V.$

We then study in Chapter \ref{Ch: prime} structural results of group von Neumann algebras arising from certain lattices following the joint work \cite{DHI16} with Daniel Hoff and Adrian Ioana. We describe all tensor product decompositions of $L(\Gamma)$ for icc countable groups $\Gamma$ that are measure equivalent to a product of non-elementary hyperbolic groups. In particular, we show that $L(\Gamma)$ is prime, unless $\Gamma$ is a product of infinite groups, in which case we prove a unique prime factorization result for $L(\Gamma)$. As a corollary we obtain that if $\Gamma$ is an icc irreducible lattice in a product of connected non-compact rank one simple Lie groups with finite center, then the II$_1$ factor $L(\Gamma)$ is prime. In particular, we deduce that the II$_1$ factors associated to the arithmetic groups $\text{PSL}_2(\mathbb Z[\sqrt{d}])$ and $\text{PSL}_2(\mathbb Z[S^{-1}])$ are prime, for any square-free integer $d\geq 2$ with $d\not\equiv 1\Mod{4}$ and any finite non-empty set of primes $S$.

This provides the first examples of prime II$_1$ factors arising from lattices in higher rank semisimple Lie groups.

Finally, we prove in Chapter \ref{Ch: W*} W$^*$-superrigidity for a large class of coinduced actions. We prove that if $\Sigma$ is an amenable almost-malnormal subgroup of an icc property (T) countable group $\Gamma$, the coinduced action $\Gamma\curvearrowright X$ from an arbitrary pmp action $\Sigma\curvearrowright X_0$ is W$^*$-superrigid. More precisely, if $\Lambda\car Y$ is another free ergodic pmp action such that the crossed-product von Neumann algebras are isomorphic $L^\infty(X)\rtimes\Gamma \simeq L^\infty(Y)\rtimes\Lambda$, then the actions are conjugate.

We also prove a similar statement if $\Gamma$ is an icc non-amenable group which is measure equivalent to a product of two infinite groups. In particular, we obtain that any Bernoulli action of such a group $\Gamma$ is W$^*$-superrigid.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View