Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Sinusoidal heart rate pattern: Reappraisal of its definition and clinical significance

Abstract

Objectives: To address the clinical significance of sinusoidal heart rate (SHR) pattern and review its occurrence, define its characteristics, and explain its physiopathology. Background: In 1972, Manseau et al. and Kubli et al. described an undulating wave form alternating with a flat or smooth baseline fetal heart rate (FHR) in severely affected, Rh-sensitized and dying fetuses. This FHR pattern was called 'sinusoidal' because of its sine waveform. Subsequently, Modanlou et al. described SHR pattern associated with fetal to maternal hemorrhage causing severe fetal anemia and hydrops fetalis. Both Manseau et al. and Kubli et al. stated that this particular FHR pattern, whatever its pathogenesis, was an extremely significant finding that implied severe fetal jeopardy and impending fetal death. Underlating FHR pattern: Undulating FHR pattern may be due to the following: (1) true SHR pattern; (2) drugs; (3) pre-mortem FHR pattern; (4) pseudo-SHR pattern; and (5) equivocal FHR patterns. Fetal conditions associated with SHR pattern: SHR pattern has been reported with the following fetal conditions: (1) severe fetal anemia of several etiologies; (2) effects of drugs, particularly narcotics; (3) fetal asphyxia/hypoxia; (4) fetal infection; (5) fetal cardiac anomalies; (6) fetal sleep cycles; and (7) sucking and rhythmic movements of fetal mouth. Definition of true SHR pattern: Modanlou and Freeman proposed the following definition for the interpretation of true SHR pattern: (a) stable baseline FHR of 120-160 bpm; (b) amplitude of 5-15 bpm, rarely greater; (c) frequency of 2-5 cycles per minute; (d) fixed or flat short-term variability; (e) oscillation of the sinusoidal wave from above and below a baseline; and (f) no areas of normal FHR variability or reactivity. Physiopathology: Since its early recognition, the physiopathology of SHR became a matter of debate. Murata et al. noted a rise of arginine vasopressin levels in the blood of posthemorrhagic/anemic fetal lamb. Further works by the same authors revealed that with chemical or surgical vagotomy, arginine vasopressin infusion produced SHR pattern, thus providing the role of autonomic nervous system dysfunction combined with the increase in arginine vasopressin as the etiology. Conclusion: SHR is a rare occurrence. A true SHR is an ominous sign of fetal jeopardy needing immediate intervention. The correct diagnosis of true SHR pattern should also include fetal biophysical profile and the absence of drugs such as narcotics.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View