Skip to main content
Open Access Publications from the University of California

SHP2 is required for BCR-ABL1-induced hematologic neoplasia

  • Author(s): Gu, S
  • Sayad, A
  • Chan, G
  • Yang, W
  • Lu, Z
  • Virtanen, C
  • Van Etten, RA
  • Neel, BG
  • et al.

© 2018 Macmillan Publishers Limited. BCR-ABL1-targeting tyrosine kinase inhibitors (TKIs) have revolutionized treatment of Philadelphia chromosome-positive (Ph+) hematologic neoplasms. Nevertheless, acquired TKI resistance remains a major problem in chronic myeloid leukemia (CML), and TKIs are less effective against Ph+B-cell acute lymphoblastic leukemia (B-ALL). GAB2, a scaffolding adaptor that binds and activates SHP2, is essential for leukemogenesis by BCR-ABL1, and a GAB2 mutant lacking SHP2 binding cannot mediate leukemogenesis. Using a genetic loss-of-function approach and bone marrow transplantation models for CML and BCR-ABL1+B-ALL, we show that SHP2 is required for BCR-ABL1-evoked myeloid and lymphoid neoplasia. Ptpn11 deletion impairs initiation and maintenance of CML-like myeloproliferative neoplasm, and compromises induction of BCR-ABL1+B-ALL. SHP2, and specifically, its SH2 domains, PTP activity and C-terminal tyrosines, are essential for BCR-ABL1+, but not WT, pre-B-cell proliferation. The mitogen-activated protein kinase kinase (MEK) / extracellular signal-regulated kinase (ERK) pathway is regulated by SHP2 in WT and BCR-ABL1+pre-B cells, but is only required for the proliferation of BCR-ABL1+cells. SHP2 is required for SRC family kinase (SFK) activation only in BCR-ABL1+pre-B cells. RNAseq reveals distinct SHP2-dependent transcriptional programs in BCR-ABL1+and WT pre-B cells. Our results suggest that SHP2, via SFKs and ERK, represses MXD3/4 to facilitate a MYC-dependent proliferation program in BCR-ABL1-transformed pre-B cells.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View