Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

On a random graph with immigrating vertices: Emergence of the giant component

Abstract

A randomly evolving graph, with vertices immigrating at rate n and each possible edge appearing at rate 1/n, is studied. The detailed picture of emergence of giant components with O(n2/3) vertices is shown to be the same as in the Erdos-Rényi graph process with the number of vertices fixed at n at the start. A major difference is that now the transition occurs about a time t = π/2, rather than t = 1. The proof has three ingredients. The size of the largest component in the subcritical phase is bounded by comparison with a certain multitype branching process. With this bound at hand, the growth of the sum-of-squares and sum-of-cubes of component sizes is shown, via martingale methods, to follow closely a solution of the Smoluchowsky-type equations. The approximation allows us to apply results of Aldous [Brownian excursions, critical random graphs and the multiplicative coalescent, Ann Probab 25 (1997), 812-854] on emergence of giant components in the multiplicative coalescent, i.e., a nonuniform random graph process. © 2000 John Wiley & Sons, Inc. Random Struct. Alg., 17, 79-102, 2000.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View