Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Involvement of calcium channels in depolarization-evoked release of adenosine from spinal cord synaptosomes.

  • Author(s): Cahill, CM;
  • White, TD;
  • Sawynok, J
  • et al.
Abstract

The potential involvement of L- and N-type voltage-sensitive calcium (Ca2+) channels and a voltage-independent receptor-operated Ca2+ channel in the release of adenosine from dorsal spinal cord synaptosomes induced by depolarization with K+ and capsaicin was examined. Bay K 8644 (10 nM) augmented release of adenosine in the presence of a partial depolarization with K+ (addition of 6 mM) but not capsaicin (1 and 10 microM). This augmentation was dose dependent from 1 to 10 nM and was followed by inhibition of release from 30 to 100 nM. Nifedipine and nitrendipine inhibited the augmenting effect of Bay K 8644 in a dose-dependent manner, but neither antagonist had any effect on release of adenosine produced by K+ (24 mM) or capsaicin (1 and 10 microM). omega-Conotoxin inhibited K(+)-evoked release of adenosine in a dose-dependent manner but had no effect on capsaicin-evoked release. Ruthenium red blocked capsaicin-induced release of adenosine but had no effect on K(+)-evoked release. Although L-type voltage-sensitive Ca2+ channels can modulate release of adenosine when synaptosomes are partially depolarized with K+, N-type voltage-sensitive Ca2+ channels are primarily involved in K(+)-evoked release of adenosine. Capsaicin-evoked release of adenosine does not involve either L- or N-type Ca2+ channels, but is dependent on a mechanism that is sensitive to ruthenium red.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View