Skip to main content
Open Access Publications from the University of California

Vagaries of the molecular clock


The hypothesis of the molecular evolutionary clock asserts that informational macromolecules (i.e., proteins and nucleic acids) evolve at rates that are constant through time and for different lineages. The clock hypothesis has been extremely powerful for determining evolutionary events of the remote past for which the fossil and other evidence is lacking or insufficient. I review the evolution of two genes, Gpdh and Sod. In fruit flies, the encoded glycerol-3phosphate dehydrogenase (GPDH) protein evolves at a rate of 1.1 x 10-10 amino acid replacements per site per year when Drosophila species are compared that diverged within the last 55 million years (My), but a much faster rate of ≃4.5 x 10-10 replacements per site per year when comparisons are made between mammals (≃70 My) or Dipteran families (≃100 My), animal phyla (≃650 My), or multicellular kingdoms (≃1100 My). The rate of superoxide dismutase (SOD) evolution is very fast between Drosophila species (16.2 x 10-10 replacements per site per year) and remains the same between mammals (17.2) or Dipteran families (15.9), but it becomes much slower between animal phyla (5.3) and still slower between the three kingdoms (3.3). If we assume a molecular clock and use the Drosophila rate for estimating the divergence of remote organisms, GPDH yields estimates of 2,500 My for the divergence between the animal phyla (occurred ≃650 My) and 3,990 My for the divergence of the kingdoms (occurred ≃1,100 My). At the other extreme, SOD yields divergence times of 211 My and 224 My for the animal phyla and the kingdoms, respectively. It remains unsettled how often proteins evolve in such erratic fashion as GPDH and SOD.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View