- Main
Vacancy driven surface disorder catalyzes anisotropic evaporation of ZnO (0001) polar surface.
Published Web Location
https://doi.org/10.1038/s41467-022-33353-2Abstract
The evaporation and crystal growth rates of ZnO are highly anisotropic and are fastest on the Zn-terminated ZnO (0001) polar surface. Herein, we study this behavior by direct atomic-scale observations and simulations of the dynamic processes of the ZnO (0001) polar surface during evaporation. The evaporation of the (0001) polar surface is accelerated dramatically at around 300 °C with the spontaneous formation of a few nanometer-thick quasi-liquid layer. This structurally disordered and chemically Zn-deficient quasi-liquid is derived from the formation and inward diffusion of Zn vacancies that stabilize the (0001) polar surface. The quasi-liquid controls the dissociative evaporation of ZnO with establishing steady state reactions with Zn and O2 vapors and the underlying ZnO crystal; while the quasi-liquid catalyzes the disordering of ZnO lattice by injecting Zn vacancies, it facilitates the desorption of O2 molecules. This study reveals that the polarity-driven surface disorder is the key structural feature driving the fast anisotropic evaporation and crystal growth of ZnO nanostructures along the [0001] direction.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-