Skip to main content
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Tensile properties, collagen content, and crosslinks in connective tissues of the immature knee joint.



The major connective tissues of the knee joint act in concert during locomotion to provide joint stability, smooth articulation, shock absorption, and distribution of mechanical stresses. These functions are largely conferred by the intrinsic material properties of the tissues, which are in turn determined by biochemical composition. A thorough understanding of the structure-function relationships of the connective tissues of the knee joint is needed to provide design parameters for efforts in tissue engineering.

Methodology/principal findings

The objective of this study was to perform a comprehensive characterization of the tensile properties, collagen content, and pyridinoline crosslink abundance of condylar cartilage, patellar cartilage, medial and lateral menisci, cranial and caudal cruciate ligaments (analogous to anterior and posterior cruciate ligaments in humans, respectively), medial and lateral collateral ligaments, and patellar ligament from immature bovine calves. Tensile stiffness and strength were greatest in the menisci and patellar ligament, and lowest in the hyaline cartilages and cruciate ligaments; these tensile results reflected trends in collagen content. Pyridinoline crosslinks were found in every tissue despite the relative immaturity of the joints, and significant differences were observed among tissues. Notably, for the cruciate ligaments and patellar ligament, crosslink density appeared more important in determining tensile stiffness than collagen content.


To our knowledge, this study is the first to examine tensile properties, collagen content, and pyridinoline crosslink abundance in a direct head-to-head comparison among all of the major connective tissues of the knee. This is also the first study to report results for pyridinoline crosslink density that suggest its preferential role over collagen in determining tensile stiffness for certain tissues.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View