Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

James–Stein for the leading eigenvector

Abstract

Recent research identifies and corrects bias, such as excess dispersion, in the leading sample eigenvector of a factor-based covariance matrix estimated from a high-dimension low sample size (HL) data set. We show that eigenvector bias can have a substantial impact on variance-minimizing optimization in the HL regime, while bias in estimated eigenvalues may have little effect. We describe a data-driven eigenvector shrinkage estimator in the HL regime called "James-Stein for eigenvectors" (JSE) and its close relationship with the James-Stein (JS) estimator for a collection of averages. We show, both theoretically and with numerical experiments, that, for certain variance-minimizing problems of practical importance, efforts to correct eigenvalues have little value in comparison to the JSE correction of the leading eigenvector. When certain extra information is present, JSE is a consistent estimator of the leading eigenvector.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View