Skip to main content
Open Access Publications from the University of California


UC San Francisco Previously Published Works bannerUCSF

The Phenotypes of Proliferating Glioblastoma Cells Reside on a Single Axis of Variation.

Published Web Location
No data is associated with this publication.

Although tumor-propagating cells can be derived from glioblastomas (GBM) of the proneural and mesenchymal subtypes, a glioma stem-like cell (GSC) of the classic subtype has not been identified. It is unclear whether mesenchymal GSCs (mGSC) and/or proneural GSCs (pGSC) alone are sufficient to generate the heterogeneity observed in GBM. We performed single-cell/single-nucleus RNA sequencing of 28 gliomas, and single-cell ATAC sequencing for 8 cases. We found that GBM GSCs reside on a single axis of variation, ranging from proneural to mesenchymal. In silico lineage tracing using both transcriptomics and genetics supports mGSCs as the progenitors of pGSCs. Dual inhibition of pGSC-enriched and mGSC-enriched growth and survival pathways provides a more complete treatment than combinations targeting one GSC phenotype alone. This study sheds light on a long-standing debate regarding lineage relationships among GSCs and presents a paradigm by which personalized combination therapies can be derived from single-cell RNA signatures, to overcome intratumor heterogeneity. SIGNIFICANCE: Tumor-propagating cells can be derived from mesenchymal and proneural glioblastomas. However, a stem cell of the classic subtype has yet to be demonstrated. We show that classic-subtype gliomas are comprised of proneural and mesenchymal cells. This study sheds light on a long-standing debate regarding lineage relationships between glioma cell types.See related commentary by Fine, p. 1650.This article is highlighted in the In This Issue feature, p. 1631.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item