- Main
An Intermediate Conformational State of Cytochrome P450cam-CN in Complex with Putidaredoxin
Published Web Location
https://doi.org/10.1021/acs.biochem.9b00192Abstract
Cytochrome P450cam is an archetypal example of the vast family of heme monooxygenases and serves as a model for an enzyme that is highly specific for both its substrate and reductase. During catalysis, it undergoes significant conformational changes of the F and G helices upon binding its substrate and redox partner, putidaredoxin (Pdx). Recent studies have shown that Pdx binding to the closed camphor-bound form of ferric P450cam results in its conversion to a fully open state. However, during catalytic turnover, it remains unclear whether this same conformational change also occurs or whether it is coupled to the formation of the critical compound I intermediate. Here, we have examined P450cam bound simultaneously by camphor, CN-, and Pdx as a mimic of the catalytically competent ferrous oxy-P450cam-Pdx state. The combined use of double electron-electron resonance and molecular dynamics showed direct observation of intermediate conformational states of the enzyme upon CN- and subsequent Pdx binding. This state is coupled to the movement of the I helix and residues at the active site, including Arg-186, Asp-251, and Thr-252. These movements enable occupation of a water molecule that has been implicated in proton delivery and peroxy bond cleavage to give compound I. These findings provide a detailed understanding of how the Pdx-induced conformational change may sequentially promote compound I formation followed by product release, while retaining stereoselective hydroxylation of the substrate of this highly specific monooxygenase.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-