Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Processes controlling δ7Li in rivers illuminated by study of streams and groundwaters draining basalts

  • Author(s): Liu, XM
  • Wanner, C
  • Rudnick, RL
  • McDonough, WF
  • et al.
Abstract

We evaluate the factors influencing the abundance, [Li], and isotopic composition of riverine Li delivered to the oceans through analyses and modeling of [Li] and δ Li in streams and groundwaters draining a single continental lithology, the Columbia River Basalts (CRBs). The streams were sampled in different climate zones that lie east (dry), and west (wet) of the Cascades Mountains, and during two different seasons (summer and late winter) in order to evaluate climatic and seasonal influences on Li isotopes in rivers. Dissolved Li (δLidis7=+9.3 to +30.4) is systematically heavier than that of fresh or weathered CRBs (-4.7 to +6.0, Liu et al., 2013), suspended loads (-5.9 to -0.3), and shallow groundwaters (+6.7 to +9.4), consistent with previous studies showing that Li isotope fractionation is affected by equilibration between stream water and secondary minerals. However, the lack of correlation between δ Li and climate zone, the uniform secondary minerals and bedrock, coupled with the highly variable (>20‰) δLidis7 indicate that other factors exert a strong control on δ Li . In particular, the heavier Li in streams compared to the shallow groundwaters that feed them indicates that continued isotopic fractionation between stream water and suspended and/or bed loads has a major influence on riverine δ Li. Seasonal δ Li variation is observed only for streams west of the Cascades, where the difference in precipitation rate between the dry and wet seasons is greatest. Reactive transport model simulations reveal that riverine δ Li is strongly controlled by subsurface residence times and the Li isotope fractionation occurring within rivers. The latter explains why there is no positive correlation between δ Li and traditional weathering proxies such as Si or normalized Si in rivers, as riverine Li isotope fractionation drives δ Li to higher values during transport, whereas the concentrations of major cations and anions are diluted. The varying residence time for groundwaters feeding the western streams in summer (long residence times, higher δ Li, greater weathering) and winter (short residence times, lower δ Li, less weathering) explains the observed seasonal variations. A global, negative correlation between δ Li and Li/Na for streams and rivers draining basaltic catchments reflects the overall transport time, hence the amount of silicate weathering. Based on our results, the increase of δ Li in seawater during the Cenozoic is unlikely related to changing climate, but may reflect mountain building giving rise to increased silicate weathering. 7 7 7 7 7 7 7 7 7 7 7 7 dis dis

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View