Skip to main content
Open Access Publications from the University of California

Expression of PIK3CA mutant E545K in the mammary gland induces heterogeneous tumors but is less potent than mutant H1047R.

  • Author(s): Meyer, D
  • Koren, S
  • Leroy, C
  • Brinkhaus, H
  • Müller, U
  • Klebba, I
  • Müller, M
  • Cardiff, Robert
  • Bentires-Alj, M
  • et al.

The phosphoinositide 3-kinase (PI3K) signaling cascade is a key mediator of cellular growth, survival and metabolism and is frequently subverted in human cancer. The gene encoding for the alpha catalytic subunit of PI3K (PIK3CA) is mutated and/or amplified in ∼30% of breast cancers. Mutations in either the kinase domain (H1047R) or the helical domain (E545K) are most common and result in a constitutively active enzyme with oncogenic capacity. PIK3CA(H1047R) was previously demonstrated to induce tumors in transgenic mouse models; however, it was not known whether overexpression of PIK3CA(E545K) is sufficient to induce mammary tumors and whether tumor initiation by these two types of mutants differs. Here, we demonstrate that expression of PIK3CA(E545K) in the mouse mammary gland induces heterogenous mammary carcinomas but with a longer latency than PIK3CA(H1047R)-expressing mice. Our results suggest that the helical domain mutant PIK3CA(E545K) is a less potent inducer of mammary tumors due to less efficient activation of downstream Akt signaling.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View