- Main
Nonparametric estimation for middle-censored data
Published Web Location
https://doi.org/10.1080/1048525031000089266Abstract
This paper provides the self-consistent estimator (SCE) and the nonparametric maximum likelihood estimator (NPMLE) for "middle-censored" data, in which a data value becomes unobservable if it falls within a random interval. We provide an algorithm to find the SCE and show that the NPMLE satisfies the self-consistency equation. We find a sufficient condition for the SCE to be concentrated on the uncensored observations. In addition, we find sufficient conditions for the consistency of the SCE and prove that consistency holds for the special case when one of the ends is a constant. Some simulation results and an illustrative example, using Danish melanoma data set, are provided.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-