Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Formation of Vibrationally Excited Methyl Radicals Following State-Specific Excitation of Methylamine

Published Web Location

https://doi.org/10.1021/jp508562w
Abstract

The photochemistry of methylamine has been investigated following state-specific excitation of the S1 state. 2 + 1 resonance-enhanced multiphoton ionization was used to detect nascent methyl radical products via the 3p(2)A2″-X̃(2)A2″ electronic transition. Methyl radicals were formed at all photolysis wavelengths used over the range of 222-240 nm. The nascent products showed significant rotational excitation and several quanta of vibrational excitation in ν3, the degenerate C-H stretch. The partially deuterated methyl-d3-amine isotopologue yielded methyl-d3 fragments with vibrational distributions entirely consistent with those measured for the fully protiated species; no mixed isotopologues were detected. Energetic constraints require that the vibrationally excited methyl radicals be produced in conjunction with electronic ground-state NH2 X̃(2)B1 radicals on the S0 surface, negating the previous interpretation that dissociation occurs on the upper adiabat. New ab initio calculations characterizing the C-N bond cleavage coordinate confirm the presence of a barrier to dissociation on S1 that is insurmountable at the photolysis wavelengths used in this work. We propose a "semi-direct" mechanism in which frustrated aminyl H atom loss on the upper adiabatic potential energy surface leads to internal conversion at the exit channel conical intersection at an extended N-H distance on its return. It is proposed that C-N bond cleavage then occurs promptly and nonstatistically on the S0 surface.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View