Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Handling Correlations Between Covariates and Random Slopes in Multilevel Models

Published Web Location

http://www.gllamm.org/rssc12023.pdf
No data is associated with this publication.
Creative Commons 'BY-NC-ND' version 4.0 license
Abstract

This article discusses estimation of multilevel/hierarchical linear models that include cluster-level random intercepts and random slopes. Viewing the models as structural, the random intercepts and slopes represent the effects of omitted cluster-level covariates that may be correlated with included covariates. The resulting correlations between random effects (intercepts and slopes) and included covariates, which we refer to as “cluster-level endogeneity,” lead to bias when using standard random effects (RE) estimators such as (restricted) maximum likelihood. While the problem of correlations between unit-level covariates and random intercepts is well known and can be handled by fixed-effects (FE) estimators, the problem of correlations between unit-level covariates and random slopes is rarely considered. When applied to models with random slopes, the standard FE estimator does not rely on standard cluster-level exogeneity assumptions, but requires an “uncorrelated variance assumption” that the variances of unit-level covariates are uncorrelated with their random slopes. We propose a “per-cluster regression” (PC) estimator that is straightforward to implement in standard software, and we show analytically that it is unbiased for all regression coefficients under cluster-level endogeneity and violation of the uncorrelated variance assumption. The PC, RE, and an augmented FE estimator are applied to a real data set and evaluated in a simulation study that demonstrates that our PC estimator performs well in practice.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item