Skip to main content
eScholarship
Open Access Publications from the University of California

Brain-computer interface controlled robotic gait orthosis

  • Author(s): Do, An H
  • Wang, Po T
  • King, Christine E
  • Chun, Sophia N
  • Nenadic, Zoran
  • et al.
Abstract

Neural ganglionic transmission was studied in vivo in the cat, using closed chest anesthetized preparations. The right stellate ganglion and its branches were exposed retropleurally and prepared for electrical stimulation of pre- and postganglionic nerve fibers. The axillary artery was cannulated allowing direct administration of drugs in the arterial blood supplying the ganglion. Stimulation of postjunctional receptors could thus be obtained by local administration of selective agents. Local administration of nicotinic, muscarinic or histaminergic agents increased heart rate and blood pressure. Opiates were given either i.v. or locally through the axillary artery: we tested the effects of morphine, Leu-enkephalin (Leu-enk), Met-enkephalin (Met-enk), [D-ala2]-Met-enkephalinamide (DAME) and etorphine. When given locally, Leu-enk (from 10 micrograms), Met-enk (from 20 micrograms), DAME (from 5 micrograms) and etorphine (from 0.2 micrograms) inhibited tachycardia induced by preganglionic stimulation and reduced the amplitude of the compound action potential recorded from the postganglionic nerve. Morphine (10-200 micrograms) had no effect. On the other hand, tachycardia induced by postganglionic nerve stimulation was unaffected by opiates in the same experimental conditions. Intravenous administration of similar doses of opiates had no effect on ganglionic transmission. When tachycardia was induced by chemical stimulation of nicotinic (DMPP), muscarinic (McN-A-343-11) or histamine receptors in the stellate ganglia, opiates were still active in reducing the effect of these chemicals. These data provide evidence that exogenous opiates exert a depressing action on postsynaptic responses of sympathetic ganglia tested in vivo, although an additional action on presynaptic terminals is not excluded. As endogenous opiates are normally present in various sympathetic ganglia, including the stellate ganglion of the cat, it is possible that they play some modulatory role on ganglionic transmission in physiological conditions.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View