Skip to main content
eScholarship
Open Access Publications from the University of California

Language acquisition and machine learning

Abstract

In this paper, we review recent progress in the field of machine learning and examine its implications for computational models of language acquisition. As a framework for understanding this research, we propose four component tasks involved in learning from experience - aggregation, clustering, characterization, and storage. We then consider four common problems studied by machine learning researchers - learning from examples, heuristics learning, conceptual clustering, and learning macro-operators - describing each in terms of our framework. After this, we turn to the problem of grammar acquisition, relating this problem to other learning tasks and reviewing four AI systems that have addressed the problem. Finally, we note some limitations of the earlier work and propose an alternative approach to modeling the mechanisms underlying language acquisition.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View