- Main
Language acquisition and machine learning
Abstract
In this paper, we review recent progress in the field of machine learning and examine its implications for computational models of language acquisition. As a framework for understanding this research, we propose four component tasks involved in learning from experience - aggregation, clustering, characterization, and storage. We then consider four common problems studied by machine learning researchers - learning from examples, heuristics learning, conceptual clustering, and learning macro-operators - describing each in terms of our framework. After this, we turn to the problem of grammar acquisition, relating this problem to other learning tasks and reviewing four AI systems that have addressed the problem. Finally, we note some limitations of the earlier work and propose an alternative approach to modeling the mechanisms underlying language acquisition.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-