Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Electronic Theses and Dissertations bannerUC San Diego

Physical mechanisms driving cell sorting in Hydra

Abstract

Cell sorting, whereby a heterogeneous cell mixture organizes into distinct tissues, is a fundamental patterning process in development. So far, most studies of cell sorting have relied either on 2-dimensional cellular aggregates, in vitro situations that do not have a direct counterpart in vivo, or were focused on the properties of single cells. Here, we report the first multiscale experimental study on 3-dimensional regenerating Hydra aggregates, capable of reforming a full animal. By quantifying the kinematics of single cell and whole aggregate behaviors, we show that no differences in cell motility exist among cell types and that sorting dynamics follow a power law. Moreover, we measure the physical properties of separated tissues and determine their viscosities and surface tensions. Based on our experimental results and numerical simulations, we conclude that tissue interfacial tensions are sufficient to explain Hydra cell sorting. Doing so, we illustrate D’Arcy Thompson’s central idea that biological organization can be understood through physical principles, an idea which is currently re-shaping the field of developmental biology.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View