Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

The effect of cannabidiol and URB597 on conditioned gaping (a model of nausea) elicited by a lithium-paired context in the rat

Abstract

Rationale

Anticipatory nausea (AN) experienced by chemotherapy patients is resistant to current anti-nausea treatments. In this study, the effect of manipulation of the endocannabinoid (EC) system on a rat model of nausea (conditioned gaping) was determined.

Objective

The potential of cannabidiol (CBD) and the fatty acid amide hydrolase (FAAH) inhibitor, URB597 (URB) to reduce conditioned gaping in rats were evaluated.

Materials and methods

In each experiment, rats received four conditioning trials in which they were injected with lithium chloride immediately before placement in a distinctive odor-laced context. During testing, in experiment 1, rats were injected with vehicle (VEH), 1, 5 or 10 mg/kg CBD 30 min before placement in the context previously paired with nausea and in experiment 2, rats were injected with VEH, 0.1 or 0.3 mg/kg URB 2 h before placement in the context. Additional groups evaluated the ability of the CB(1) antagonist/inverse agonist, SR141716A, to reverse the suppressive effects of URB. Experiment 3 measured the potential of URB to interfere with the establishment of conditioned gaping.

Results

When administered before testing, CBD (1 and 5, but not 10 mg/kg) and URB (0.3, but not 0.1 mg/kg) suppressed conditioned gaping. The effect of URB was reversed by pre-treatment with the CB(1) antagonist/inverse agonist, SR141716A. When administered before conditioning, URB also interfered with the establishment of conditioned gaping.

Conclusions

Manipulations of the EC system may have therapeutic potential in the treatment of AN.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View