Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Convergence of the Many-Body Expansion for Energy and Forces for Classical Polarizable Models in the Condensed Phase

Abstract

We analyze convergence of energies and forces for the AMOEBA classical polarizable model when evaluated as a many-body expansion (MBE) against the corresponding N-body parent potential in the context of a condensed-phase water simulation. This is in contrast to most MBE formulations based on quantum mechanics, which focus only on convergence of energies for gas-phase clusters. Using a single water molecule as a definition of a body, we find that truncation of the MBE at third order, 3-AMOEBA, captures direct polarization exactly and yields apparent good convergence of the mutual polarization energy. However, it renders large errors in the magnitude of polarization forces and requires at least fourth-order terms in the MBE to converge toward the parent potential gradient values. We can improve the convergence of polarization forces for 3-AMOEBA by embedding the polarization response of dimers and trimers within a complete representation of the fixed electrostatics of the entire system. We show that the electrostatic embedding formalism helps identify the specific configurations involving linear hydrogen-bonding arrangements that are poorly convergent at the 3-body level. By extending the definition of a body to be a large water cluster, we can reduce errors in forces to yield an approximate polarization model that is up to 10 times faster than the parent potential. The 3-AMOEBA model offers new ways to investigate how the properties of bulk water depend on the degree of connectivity in the liquid.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View