Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Traditional Chinese Medicine Fuzheng Huayu Prevents Development of Liver Fibrosis in Mice

Abstract

Aim

To investigate the therapeutic effect of FZHY on hepatic fibrosis in mice and to determine the mechanism of its action.

Methods

Wild type mice were subjected to toxic (carbon tetrachloride, CCl4) or cholestatic (bile duct ligation, BDL). Upon induction of liver fibrosis, mice were treated with FZHY (4.0g/kg, 2w, oral gavage) or vehicle (PBS). Livers were analyzed by Sirius Red staining, immunostaining and RT-PCR for profibrogenic and pro-inflammatory genes. The effect of FZHY on hepatocytes, inflammatory responses, activation of fibrogenic myofibroblasts, and ROS production was assessed.

Results

FZHY strongly inhibited the development of CCl4- and BDL-induced liver fibrosis in mice. Liver fibrosis was significantly improved in FZHY-treated mice, as demonstrated by reduced content of hepatic hydroxyproline and Sirius Red positive area. Moreover, the number of SMA +and Desmin+ myofibroblasts was significantly reduced in the livers of FZHY-treated mice, and correlated with downregulation of the mRNA levels of α-SMA, collagen-α1(I), tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), TGF-β1 and its receptor TGF-βRI, and platelet-derived growth factor-β (PDGF-β), suggesting that FZHY inhibits activation of fibrogenic myofibroblasts. Furthermore, administration of FZHY markedly decreased recruitment of F4/80+ inflammatory macrophages to the livers of CCl4- and BDL-injured mice, and this effect was associated with downregulation of monocyte chemoattractant protein-1(MCP-1) and macrophage inflammatory protein-1 (MIP-1) mRNA. In addition, the lipid peroxidation products 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA) were reduced, demonstrating that treatment with FZHY can effectively block ROS production in livers of CCl4- and BDL-injured mice.

Conclusions

Traditional Chinese Medicine FZHY has a variety of anti-fibrotic effects, including strong anti-oxidant, anti-inflammatory and anti-fibrotic effects on myeloid cells and hepatocytes. Although FZHY compound does not seem to directly affect HSCs, it regulates HSC activation via inhibition of macrophage recruitment to fibrotic liver.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View