Skip to main content
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Predictors of Enteric Pathogens in the Domestic Environment from Human and Animal Sources in Rural Bangladesh


Fecal indicator organisms are measured to indicate the presence of fecal pollution, yet the association between indicators and pathogens varies by context. The goal of this study was to empirically evaluate the relationships between indicator Escherichia coli, microbial source tracking markers, select enteric pathogen genes, and potential sources of enteric pathogens in 600 rural Bangladeshi households. We measured indicators and pathogen genes in stored drinking water, soil, and on mother and child hands. Additionally, survey and observational data on sanitation and domestic hygiene practices were collected. Log10 concentrations of indicator E. coli were positively associated with the prevalence of pathogenic E. coli genes in all sample types. Given the current need to rely on indicators to assess fecal contamination in the field, it is significant that in this study context indicator E. coli concentrations, measured by IDEXX Colilert-18, provided quantitative information on the presence of pathogenic E. coli in different sample types. There were no significant associations between the human fecal marker (HumM2) and human-specific pathogens in any environmental sample type. There was an increase in the prevalence of Giardia lamblia genes, any E. coli virulence gene, and the specific E. coli virulence genes stx1/2 with every log10 increase in the concentration of the animal fecal marker (BacCow) on mothers' hands. Thus, domestic animals were important contributors to enteric pathogens in these households.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View