Skip to main content
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Assessing cortical bone mechanical properties using collagen proton fraction from ultrashort echo time magnetization transfer (UTE-MT) MRI modeling


Cortical bone shows as a signal void when using conventional clinical magnetic resonance imaging (MRI). Ultrashort echo time MRI (UTE-MRI) can acquire high signal from cortical bone, thus enabling quantitative assessments. Magnetization transfer (MT) imaging combined with UTE-MRI can indirectly assess protons in the organic matrix of bone. This study aimed to examine UTE-MT MRI techniques to estimate the mechanical properties of cortical bone. A total of 156 rectangular human cortical bone strips were harvested from the tibial and femoral midshafts of 43 donors (62 ± 22 years old, 62 specimens from females, 94 specimens from males). Bone specimens were scanned using UTE-MT sequences on a clinical 3 T MRI scanner and on a micro-computed tomography (μCT) scanner. A series of MT pulse saturation powers (400°, 600°, 800°) and frequency offsets (2, 5, 10, 20, 50 kHz) was used to measure the macromolecular fraction (MMF) utilizing a two-pool MT model. Failure mechanical properties of the bone specimens were measured using 4-point bending tests. MMF from MRI results showed significant strong correlations with cortical bone porosity (R = -0.72, P < 0.01) and bone mineral density (BMD) (R = +0.71, P < 0.01). MMF demonstrated significant moderate correlations with Young modulus, yield stress, and ultimate stress (R = 0.60-0.61, P < 0.01). These results suggest that the two-pool UTE-MT model focusing on the organic matrix of bone can potentially serve as a novel tool to detect the variations of bone mechanical properties and intracortical porosity.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View